
Common interview topics for
programming interviews.

by Warwick New

Introduction

When applying for AAA programming positions, especially those of a more

technical nature, there are going to be some some barrier to entry questions

that can be the deciding factor between you and another applicant.

Task

In this session I want you guys to see how relevant each of these skills are to

what you want to do in industry and based on that make decisions on getting

an understanding of how these aspects work under the hood.

1/2

1/12

Optimisation

From personal experience, if you are going into anything more technical than

gameplay programming, you are going to find that interviewers are going to

want you to explain how you’ve optimised code in the past.

Topics From my experiences

Personally I’ve had technical tests that expected me to make use of

concurrency, abstraction & chunking, pointers and knowledge on CPU

memory caching to reduce simulation times from seconds per frame to

milliseconds per frame.

Topics From Jakes experiences

Jake Meaker has told me about his application to a AAA studio that required

him to explain low level C concepts such as bit shifts, binary operations,

and hex code operations.

2/12

Optimisation

Questions to ask yourself

Can I use concurrency safely in my programming language of choice?

Possible task: use concurrency to optimise a simple project like drawing

the Mandelbrot set.

Can I use objects to abstract data not just for readability purposes but also

for performance purposes.

Possible task: Use level chunking to optimise a simulation like boids or

one of your games with a large map.

Do I know how memory is allocated and deallocated in ram.

Possible task: Tinker with bit shifting and small optimisations based on

making use of CPU features like SIMD.

If advertising C++ experience, can I explain how and why I’d choose to use a

pointer in a program.

Possible task: Create a program that makes use of pointers in a useful

manner.
3/12

Maths - Linear Algebra

Cross Product, Dot Product.

These are two extremely common functions that are extremely useful for

common 3D operations you may have to perform in game engines.

““ The dot product is a simple yet extremely useful mathematical

tool. It encodes the relationship between two vectors’ magnitudes

and directions into a single value.

— Allen Chou

Naughty Dog

4/12

Maths - Linear Algebra

Cross Product, Dot Product.

Dot Product

We can tell if the angle difference is obtuse acute perpendicular or facing

the same way really easily.

We can tell the magnitude difference between two vectors as well

You can use dot products to work out if a position is in a filed of view or

what direction something is entering a trigger(Only trigger event when

player leaves room not enters etc).

Cross Product

Used to generate vectors that are perpendicular to two vectors.

Useful for reflections of beams of light ricochet getting the sideways

vector of a object based on it’s forward vector. (what way should A&D

move with WASD)

5/12

Maths - Cross Product, Dot Product.
Questions to ask Oneself

Can I describe what a Dot Product/Cross Product is?

Possible task: Write yourself a refresher document before you might

interview.

Can I point to examples of having used these algorithms.

Possible task: If you haven’t used these for anything simulate a beam of

light puzzle with reflections.

Can I explain how I’d use one in a given context.

Possible task: Try to use them in multiple contexts until you understand

their usefulness.

6/12

Maths - Linear Algebra

Matrices

You may not need to know too much about these but knowing the basics can

be very handy if you’re performing a lot of translations. Mostly useful for

graphics and physics programmers.

Matrices are represented like 2D arrays of numbers.

A single matrix can represent a change in a vector using: translation,

rotation, and scaling in one piece of data.

Fun fact matrices are used to translate objects in world space to a flat plane

when game engines render scenes.

7/12

Physics

Most of you guys have interacted with a lot of physics systems in game

engines already so you should have an intuitive understand of most of this

stuff. But can you put it into words.

Can you discuss how velocity, rates of change, and gravity is simulated.

(Newtonian Mechanics)

Possible task: Work through a bouncing ball simulation in a simple 2d

sandbox and annotate how your code relates to newtons laws.

Can you discuss how to make objects bounce off angled surfaces (Cross/Dot

product could useful here)

Possible task: Create a spline for predicting where a cannonball will be

fired and bounce in a simple 2D environment.

Collision Detection

Possible task: Research common collision detection methods and

implement some simple ones.

8/12

Maths/Physics - Euler Rotations vs
Quaternions

Most of you have tinkered with rotating objects in game engines, Rotating

using Euler’s roll, yaw, and pitch. Looking at quaternions. Just remember that

these things can happen.

Eulers rotations can run into Gimbal lock, (An object rotation get’s stuck on

one axis)

Quaternion rotations avoid this issue.

9/12

Networking Stack

If you’re doing anything with networks or distributed systems it helps to know

these things.

This is the web stack

image::images/http-layers.png[https://developer.mozilla.org/en-

US/docs/Web/HTTP/Overview]

10/12

https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview

Networking Stack

Points to remember.

Most video game netcode is built on top of UDP and TCP which

communicate through sockets. (Though some projects use web sockets

nowadays)

Sockets are connected to the web through ports (Minecraft servers use port

25565 by default)

The sever will likely need to use concurrency to handle multiple real time

connections on these sockets.

RPC stands for remote procedure call and tells the server to run a function

on it’s side, often used for triggering events in multiplayer games.

11/12

Addendum - Bouncing raindrops with
physics (Website only)

// create background element
let canvas = document.createElement("canvas");
document.body.appendChild(canvas);
canvas.style.cssText = `
background: var(--background);
position:fixed;
left:0;
top:0;
z-index:-99999;
`
// set it's size
canvas.width = window.innerWidth;
canvas.height = window.innerHeight;

let context = canvas.getContext('2d');

// this will be populated and used later
drawableObjectList = [];

class Splash {
 constructor(distance, x, y) {
 this.distance = distance;
 this.x = x;

12/12

 this.y = y;
 this.time = 0;
 }
 draw() {
 context.fillStyle = "#2a232300";
 context.strokeStyle = `rgba(42, 35, 35, ${this.distance + 0.1})`;

 let splashSize = this.distance * (this.time / 100);

 context.beginPath();
 context.ellipse(this.x, this.y, 100 * splashSize, 50 * splashSize, 0, 0,
Math.PI * 2);
 context.fill();
 context.stroke();

 if (this.time > 100) {
 drawableObjectList = drawableObjectList.filter((item) => { return item
!== this });
 }

 this.time += 1;
 }
}
// this is the object that'll look cool
class Drop {
 constructor() {
 this.x = Math.random() * window.innerWidth;
 this.y = Math.random() * window.innerHeight;

 this.distance = Math.random();

 this.velocity = [(Math.random()-.5) * 5, this.distance + 0.1];
 }
 draw() {
 context.fillStyle = `rgba(255, 255, 255, ${this.distance + 0.1})`;
 context.strokeStyle = `rgba(255, 255, 255, ${this.distance + 0.1})`;

 // draw point
 context.beginPath();
 context.moveTo(this.x, this.y);
 context.lineTo(this.x, this.y - this.distance * 100);
 context.stroke();
 // simulate gravity
 const gravity = 1.05;
 // move point
 this.y += this.velocity[1] ;
 this.x += this.velocity[0] ;
 // Apply gravity to our velccity.
 this.velocity[1] += gravity;

 // keep point in bounds
 if (this.y > window.innerHeight - (1 - this.distance) * 300) {
 // Add splash
 drawableObjectList.push(new Splash(this.distance, this.x, this.y))

 // Apply bounce based on floor
 this.velocity[1] = this.velocity[1] * -1 * 0.95
 }

 // keep point in bounds
 if (this.x > window.innerWidth || this.x < 0) {

 // Add splash

 // Apply bounce based on wall
 this.velocity[0] = this.velocity[0] * -1
 }
 }
}

// populate element array
for (let i = 0; i < 100; i++) {
 drawableObjectList.push(new Drop());
}

function loop() {
 // Loop and clear frame
 requestAnimationFrame(loop);
 context.clearRect(0, 0, window.innerWidth, window.innerHeight);

 // Draw objects.
 drawableObjectList.forEach((point) => {
 point.draw();
 });

 // Handle page size change
 if (canvas.width != window.innerWidth) {
 canvas.width = window.innerWidth;
 }
 if (canvas.height != window.innerHeight) {
 canvas.height = window.innerHeight;
 }

}
loop();

	Introduction
	Task

	Optimisation
	Optimisation: Questions to ask yourself
	Maths - Linear Algebra: Cross Product, Dot Product.
	Maths - Linear Algebra: Cross Product, Dot Product.
	Maths - Cross Product, Dot Product. Questions to ask Oneself
	Maths - Linear Algebra: Matrices
	Physics
	Maths/Physics - Euler Rotations vs Quaternions
	Networking Stack
	Networking Stack: Points to remember.
	Addendum - Bouncing raindrops with physics (Website only)

