
Presentable Portfolio Pieces
by Warwick New

In this session we’re going to cover some key areas of creating presentable
portfolio pieces which a

potential job may want to look at before hiring a
candidate. Some companies if given the

opportunity will want to look though a
project you’ve already created and ask you questions about

it either in
interview, or even worse, look through the projects when comparing you to
another

candidate after this stage.

Engaging Portfolio Pieces
Adding fun to your portfolio pages — A couple extra points

Max Amaden

Look at how animated and engaging these GIFs are for his games.

Doesn’t this make you want to see more about this project?

Unity WebGL Builds

If you have a simple quick to play unity project why not spend some

extra time time to put a playable demo of your project on your website.

Terry’s Portfolio page on Moths

Showing personality is good.

You can have Blogs material on anything that is slightly relevant to your

career Showing passion is always good

https://fatluigi9k.wixsite.com/maxamaden/projects
https://simmer.io/@pocarino1/pocarino1-rocketboost-prototype
http://terrygreer.com/moths.html

career. Showing passion is always good.

DannyDaley’s Project navigator

This site has the most professional projects front loaded but hit the

second page and more projects that act as blogs become present.

Creating engagement through stuff other than your projects such as

articles can make you seem more professional and engaged in the field

above most of competitors. Blog sections can help your website feel

more populated (Though it helps to create seperate sections)

This guy even had a store at one point same as nodes.

If you use any platforms to show projects like github or artstation link to

it.

1/6

Task

Plan some Portfolio Projects or Blog Idea’s to help populate your site.

https://dannydaley.co.uk/projects/
https://n-o-d-e.shop/collections/clothing

2/6

Clean GitHub Code

Many programming positions will want you to include a link to your github

account. There is a chance that recruiters will look at the quality of your
code

on github before going forwards with interviewing you (Though not always).

Though this doesn’t always happen it helps to make sure that your most

recent
github projects reflect well of you.

Knowing how your code works is probably an obvious thing to remember

before
being questioned about it. But do you know how to explain it? Do you

know how
you would improve the feature or the way it was programmed if

you had to
implement it again. This is where code architecture can come in

handy. Using
linguistic tools such as common design patterns and highly

readable code can
be important for this. If not for the companies reference for

your own if you’re
ever questioned on it.

Design Patterns

Here is a website detailing twenty two of the most common design
patterns:

refactoring.guru.
Being able to use them to explain how you approach a code

problem may also be
required for a code test.

““ Each pattern describes a problem which occurs over and over

again in our
 environment, and then describes the core of the

solution to that problem, in
 such a way that you can use this

solution a million times over, without ever
doing it the same way

twice.

— Erich Gamma

Design Patterns: Elements of Reusable Object-Oriented Software

These patterns solve extremely common problems in all software and are

often
extremely useful when planning out a code project in UML or trying to

make your
code more readable/efficient.

These patterns are the most common in my opinion

Observer - This object is often used to watch when another object or
1/4

3/6

Clean Code

Readable code is imperative if someone who is trying to hire you looks at it.
If

they judge that your code is not worth the time to try to understand then
it’s

unlikely that you’d be chosen over someone else whose code they can. Also
if

your working in a team readable code is an extremely important skill to stop

time wasting anyway.

““ Indeed, the ratio of time spent reading versus writing is well over

10 to 1. We
 are constantly reading old code as part of the effort

to write new code.
…​[Therefore,] making it easy to read makes it

easier to write.

— Robert C. Martin

Clean Code: A Handbook of Agile Software Craftsmanship

https://refactoring.guru/design-patterns
https://refactoring.guru/design-patterns/observer

Observer - This object is
often used to watch when another object or

complex system needs to change. This
object may be familiar to you as

the already pre implemented events system in
Unreal or Unity, where

the engine watches for an event to happen before running
your objects

code. In Web Dev an example might be a class whose responsibility
is to

track the position of a delivery driver to make sure they’re not way off

course.

Facade (aka: interface) -
can be imperative for code readability. If you

have a complex collection of
objects and classes that can only achieve a

job together then it is a good idea
to create a class to hide the complexity

behind much like a library.

Singleton - This class
only ever exists once in your code. Once created

any other call to create a
singleton class will just return the already

created instance. You can see how
using this with a facade for a already

running complex system like sound could
reduce the amount of memory

a program is using.

Factory - Imagine you
need many instances of a class to do a similar job

with slightly different
types. Why not make a class that manages the

creation of these objects.

Builder - So you have a highly customisable object that can be tailored to

UML

Is your descriptions of your solutions in your portfolio actually readable.

Which type of UML should you use to describe a certain solution. Do you need

to
come up with a more complex visualisation to communicate what you’re

trying to
get across. Is it readable to a stranger.
2/4

Key questions to ask yourself

1. Would a stranger know what this class or function does based on it’s

function
name and/or comment description?

2. Is this code honestly best practice? (Many if statements where a switch

could
be used more concisely)

3. Is there too much code in one place? Can I maybe create a separate

method or
class to handle this strange case.

4. Is there any duplicate code? What can I do to reduce the amount of code

in my
program without harming the functionality.

5. Am I conforming to the correct naming schemes. Unreal uses PascalCase

a lot
for example where most other programs use camelCase.

4/6

Task

Analyse the code you have that’ll be accessible to recruiters. Is it good
enough.

Can you make it good enough before they look at it?

https://refactoring.guru/design-patterns/observer
https://refactoring.guru/design-patterns/facade
https://refactoring.guru/design-patterns/singleton
https://refactoring.guru/design-patterns/factory-method
https://refactoring.guru/design-patterns/builder

Builder So you have a
highly customisable object that can be tailored to

the requirements of the code.
Maybe a character creator in a game,

Rather than having to fill the constructor
with a huge number of

variables why not create a class whose sole job is to
construct the object

using different pieces at a time. Allowing you to break the
process into

steps if the default values don’t need to be changed.

 Over use of design patterns may just complicate your code only

use them
where you’ve noticed that it would simplify your

project or will save you time
and effort in the future.

5/6

https://refactoring.guru/design-patterns/builder

	Engaging Portfolio Pieces
	Task
	Clean GitHub Code
	Design Patterns
	UML

	Clean Code
	Task

