
C++ Memory Management
by Warwick New

I am not used to modern Cpp pointers. My background is more in using

pointers the old fashioned way.

I highly recommend with modern versions of C++ that
you look into using

Smart Pointers over the new and delete keywords.

Learning the old way will help you understand what’s going on under the

hood
however.

Links for smart pointers with Cpp11

1. Sutter’s Mill:
Elements of Modern C++

2. Bjarne
Stroustrup (Creator of Cpp): Cpp11 Style

1/13

https://herbsutter.com/elements-of-modern-c-style/
https://learn.microsoft.com/en-us/events/goingnative-2012/keynote-bjarne-stroustrup-cpp11-style

What is memory management, why is it
useful?

Memory Management is the process of allocating and deallocating memory

manually
rather than letting the syntax handle the process for you. There are

many use
cases for it but here are some of the reasons to use it, and not to use

it.
These are similar to references in C#.

Reasons to use

Optimisation of both ram usage and CPU cycles wasted allocating and

reading memory.

Object lifecycle, keep an object alive even after the original parent object

has died.

Reasons to avoid

Can cause memory leaks

Can add unnecessary complication to a piece of code.

2/13

Stack Memory vs Heap Memory

Many modern languages will manage this aspect of programming for you

nowadays but
every program at some level will have stack memory and heap

memory. C++ and
other low level languages just let you place variables and

objects in whichever
one you desire.

3/13

An example of where you might see the two used is, having the world data

stored
in the heap to be accessed by many different parts of the game engine

including
things like the render code in the stack.

4/13

The Stack

The stack is a special area of memory which stores variables in the way you’ve

probably been mostly using them, within scope of the functions and objects

currently being run. Objects and variables used in your programs in stack

memory
are automatically deleted when the scope (Current function) has

finished.

Advantages of Stack

Fast

Automatic Code Cleanup at the compiler level.

Disadvantages of Stack

Limited memory

Can’t design code around members lasting longer than the parent.

5/13

The Heap

The Heap however is free form memory that can have objects and variables

assigned to it manually using the new and delete keywords.

Advantages of Heap

Memory is only limited by the amount of ram in the system.

Can design code around members lasting longer than the parent.

Can be used to make sure your program never goes above a certain

amount of ram

Disadvantages of Heap

Slower to allocate and deallocate.

Risk memory leaks if not used well and you’re not using smart pointers

properly.

Has to manually be allocated by the programmer.

6/13

Pointers and References

As simple as possible, pointers are just variables that store the location of

other variables (aka references). Pointers are one of the hardest concepts for

students to get their heads around sometimes, so I reccomend you look at

other
descriptions yourself such as here:
w3schools. But it is an
indispensable

tool for optimisation and sharing heap memory objects between
different

objects and classes.

7/13

https://www.w3schools.com/cpp/cpp_pointers.asp

Optimisation? how?

Consider the following program

Something that you might not know here is that every time you pass a

variable to
a function like this it duplicates it in the stacks memory, so if the

variable
changes in the function it doesn’t overwrite the original variable

unless we
tell it to with the = operator, which is another write to memory.

All that extra CPU/RAM time spent writing and deleting huge objects and

variables from memory when we only want to change the original variable.

double complexfunction(double data){

// lots of complex arithmatic on data that changes it

return data;

}

double bigbitodata = 999999....;

bigbitodata = complexfunction(bigbitodata);

8/13

Introducing passing a variable to a function by reference.

In the above example you can see that we’re using the & symbol in the

function
description to pass a reference to the data that’s in the parent scope

rather
than the data itself to the function, passing the pointer to the object

rather
than the object’s data. Because of this we can manipulate the object in

the function and not even return the data afterwards because the data of the

original object we referenced was changed in the function.

void complexfunction(double& data){

// lots of complex arithmatic on data that changes it

}

double bigbitodata = 999999....;

complexfunction(bigbitodata);

9/13

What else can they be used for?

A reference can also be stored in a variable denoted by it’s type and a * (e.g.
A

pointer that points to a variable of type int : int* variable;) to be passed
to

other objects.

This is especially useful for large chunks of data stored in
the heap that needs

to be manipulated by many pieces of code such as world data
in a game.

And has a lifecycle that may last far longer than the code currently
running

function. Like a block change in minecraft on a chunk.

10/13

new and delete
This is how you manually allocate memory to the heap manually. You use the

new
keyword to create an object and the delete keyword to remove it from

the
stack. Every single variable created with the new keyword must be

deleted when
your done with it if you don’t want that memory to hang around

potentially build
up and cause a memory leak.

You’d use this when you want to personally manage the lifecycle of an object

and/or you want an object to last longer than the scope you defined it in.

If you allocate a array of certain object types to the heap this is also a
great

way of making sure that you don’t use more memory on that object than you

want to, as by default in C++ most objects don’t grow in size, once you block

out that memory in the heap you know exactly how much ram you’ve added

to the
program for the lifecycle of that array.

11/13

RAII

This is all well and good but on larger programs this stuff can become hard to

manage. This is where RAII comes in. And is generally in C++ how you safely

manage
memory.

What is RAII (Resource Acquisition is Initialisation)

Every object is responsible for getting it’s own resources and clearing them.

Handle all memory management of pointer content in constructors and

destructors.

Allows you to essentially use your objects like you would in C# safe in the

knowledge these components will clean up after themselves when the

scope closes.

Seems to be the method the standard library is moving towards, and is

practically the defacto method for C++ systems.

12/13

Task

Using this sheet create a tic tac toe board with turns in C++ that only stores
the

board in the heap once and never in the stack (No need to check win

conditions, just prove to yourself that you can manipulate the board through a

pointer). Imagine you’re trying to run this game in as little an amount of ram

as possible.

Showing Off?

Use smart pointers.

13/13

	What is memory management, why is it useful?
	Stack Memory vs Heap Memory
	!
	The Stack
	The Heap
	Pointers and References
	Optimisation? how?
	!
	What else can they be used for?
	new and delete
	RAII
	Task

