
Programming Workshops
Principles of Computing

Dr. Joseph Walton-Rivers
Week 1

Today’s Topics

• Variables
• Functions (using)
• Branching

1

But first...

Question
How did you get from arriving on campus this morning to this room?

2

Abstraction!

• Did these answers seem correct to you?

• How did they differ?
• (either I got lucky and you did this without thinking, or I added my own
description to the end)

• Some seemed more detailed than others
• We call this ’detail’ abstraction in programming

3

Abstraction!

• Did these answers seem correct to you?
• How did they differ?

• (either I got lucky and you did this without thinking, or I added my own
description to the end)

• Some seemed more detailed than others
• We call this ’detail’ abstraction in programming

3

Abstraction!

• Did these answers seem correct to you?
• How did they differ?
• (either I got lucky and you did this without thinking, or I added my own
description to the end)

• Some seemed more detailed than others
• We call this ’detail’ abstraction in programming

3

Abstraction!

• Did these answers seem correct to you?
• How did they differ?
• (either I got lucky and you did this without thinking, or I added my own
description to the end)

• Some seemed more detailed than others

• We call this ’detail’ abstraction in programming

3

Abstraction!

• Did these answers seem correct to you?
• How did they differ?
• (either I got lucky and you did this without thinking, or I added my own
description to the end)

• Some seemed more detailed than others
• We call this ’detail’ abstraction in programming

3

Turing Machines

• The computational model I described in previous session was correct
• But it also was very ‘low-level’, which makes it a poor choice for day-to-day
programming

• We abstract this away by programming in a higher-level of abstraction
• So which level of abstraction is the right level of abstraction?

• The one that gets the job done
• Often, solving problems requires thinking across these levels of abstraction

4

Turing Machines

• The computational model I described in previous session was correct
• But it also was very ‘low-level’, which makes it a poor choice for day-to-day
programming

• We abstract this away by programming in a higher-level of abstraction
• So which level of abstraction is the right level of abstraction?
• The one that gets the job done
• Often, solving problems requires thinking across these levels of abstraction

4

Variables

Variables

• Variables are how we can store data that might change
• In constrast to a literal - 42, ’a’, or ”Hello” (debated – not for now)
• And constants - ”variables that can’t change”

• Variables have a type and a name
• In C-Sharp, when you declare a variable, you write the type followed by the
name

• When you access a variable you just use the name
• We’ll talk more about types in a later session

5

Types: Crash course

Common variable types:

Type Value Example

int whole numbers 42
float numbers with a factional component 3.14
string sequences of text ”Hello world”
bool true or false true

6

An Example - declaring a variable

int myValue;

• What is the type?

int
• What is the name? myValue
• if I wanted to make the type a float what would I change? int becomes float

7

An Example - declaring a variable

int myValue;

• What is the type? int
• What is the name?

myValue
• if I wanted to make the type a float what would I change? int becomes float

7

An Example - declaring a variable

int myValue;

• What is the type? int
• What is the name? myValue
• if I wanted to make the type a float what would I change?

int becomes float

7

An Example - declaring a variable

int myValue;

• What is the type? int
• What is the name? myValue
• if I wanted to make the type a float what would I change? int becomes float

7

An Example

myValue = 42;

• What is the name of the variable on this line?

myvalue
• I’m assigning an integer literal to this. What is that value? 42

8

An Example

myValue = 42;

• What is the name of the variable on this line? myvalue
• I’m assigning an integer literal to this. What is that value?

42

8

An Example

myValue = 42;

• What is the name of the variable on this line? myvalue
• I’m assigning an integer literal to this. What is that value? 42

8

Functions

Functions as abstraction

• Having to manually write out how to do something over and over again from
the lowest-possible level of detail gets tedious quickly

• Instead, it’s useful to treat ‘units of work’ as black boxes which we can use
• Sometimes these black boxes have side-effects this makes Dijkstra, unit
testers (and Haskell programmers) sad

9

A function

• We can think of a (pure) function as something that:
• Has a name (WriteLine)
• Takes 0 or more arguments, which have both:

• a type (String, Int) - we’ll be looking at this in the next worksheet
• (most of the time) a name

• Can return a value - we don’t give this a name just a type (int, float)
• Pure means has no side-effects, the functions we’re using today will have
side effects, as will almost all the things you do in game engines/robotics

• We call functions that ‘live inside’ classes methods
• Some programmers might call functions that live outside classes ‘free functions’

10

WriteLine

Let’s take a look at a function called WriteLine (in the Console class)

static void WriteLine (string format, object? arg0, object? arg1);

• What is this function’s name?

WriteLine
• What is this function’s arguments? format, arg0, arg1
• What is this function’s return type? void (nothing)
• Also, static is here, that means we don’t work on an instance of its class.
Don’t worry about that for now, we’ll get to that later (and you’ll see OO stuff
with Matt)

11

https://learn.microsoft.com/en-us/dotnet/api/system.console.writeline?view=net-7.0#system-console-writeline(system-string)

WriteLine

Let’s take a look at a function called WriteLine (in the Console class)

static void WriteLine (string format, object? arg0, object? arg1);

• What is this function’s name? WriteLine
• What is this function’s arguments?

format, arg0, arg1
• What is this function’s return type? void (nothing)
• Also, static is here, that means we don’t work on an instance of its class.
Don’t worry about that for now, we’ll get to that later (and you’ll see OO stuff
with Matt)

11

https://learn.microsoft.com/en-us/dotnet/api/system.console.writeline?view=net-7.0#system-console-writeline(system-string)

WriteLine

Let’s take a look at a function called WriteLine (in the Console class)

static void WriteLine (string format, object? arg0, object? arg1);

• What is this function’s name? WriteLine
• What is this function’s arguments? format, arg0, arg1
• What is this function’s return type?

void (nothing)
• Also, static is here, that means we don’t work on an instance of its class.
Don’t worry about that for now, we’ll get to that later (and you’ll see OO stuff
with Matt)

11

https://learn.microsoft.com/en-us/dotnet/api/system.console.writeline?view=net-7.0#system-console-writeline(system-string)

WriteLine

Let’s take a look at a function called WriteLine (in the Console class)

static void WriteLine (string format, object? arg0, object? arg1);

• What is this function’s name? WriteLine
• What is this function’s arguments? format, arg0, arg1
• What is this function’s return type? void (nothing)
• Also, static is here, that means we don’t work on an instance of its class.
Don’t worry about that for now, we’ll get to that later (and you’ll see OO stuff
with Matt)

11

https://learn.microsoft.com/en-us/dotnet/api/system.console.writeline?view=net-7.0#system-console-writeline(system-string)

Documentation

• That doens’t actually tell us what the function does
• This is why ’my code is self documenting’ is rarely true by the way

• As programmers technical writing is a skill we need to master for our ‘other
audiance’

• Writes the specified data, followed by the current line terminator, to the
standard output stream.

• Ah! that was something Joe mentioned in the session the other day!
• This is a function that prints things to the screen!

12

Documentation

• That doens’t actually tell us what the function does
• This is why ’my code is self documenting’ is rarely true by the way

• As programmers technical writing is a skill we need to master for our ‘other
audiance’

• Writes the specified data, followed by the current line terminator, to the
standard output stream.

• Ah! that was something Joe mentioned in the session the other day!

• This is a function that prints things to the screen!

12

Documentation

• That doens’t actually tell us what the function does
• This is why ’my code is self documenting’ is rarely true by the way

• As programmers technical writing is a skill we need to master for our ‘other
audiance’

• Writes the specified data, followed by the current line terminator, to the
standard output stream.

• Ah! that was something Joe mentioned in the session the other day!
• This is a function that prints things to the screen!

12

Function as contract

Ok, so here’s what we know from the function signature:

• This function is something we can give three ‘things’ (arguments) to:
• A string called format (whatever that is)
• An ‘ object? ‘ called arg0
• An ‘ object? ‘ called arg1

• What’s the next thing we would like to know?

• object is c-sharp for ”I don’t care, give me anything”
• ‘ ? ‘ is c-sharp for ’or possibly null’

• We also know this function will return nothing (void)

13

Function as contract

Ok, so here’s what we know from the function signature:

• This function is something we can give three ‘things’ (arguments) to:
• A string called format (whatever that is)
• An ‘ object? ‘ called arg0
• An ‘ object? ‘ called arg1

• What’s the next thing we would like to know?
• object is c-sharp for ”I don’t care, give me anything”
• ‘ ? ‘ is c-sharp for ’or possibly null’

• We also know this function will return nothing (void)

13

Calling the function

Console.WriteLine(”Hello, World!”, null, null);

There is also a single and multi-argument versions of this function. I wanted to
make it clear what was an argument and what was a return type by providing
different numbers of them in my ealier slide.

Passing null to this function twice is silly...

14

Calling the function

Console.WriteLine(”Hello, World!”, null, null);

There is also a single and multi-argument versions of this function. I wanted to
make it clear what was an argument and what was a return type by providing
different numbers of them in my ealier slide.

Passing null to this function twice is silly...

14

Calling the function

Console.WriteLine(”Hello, World!”, null, null);

There is also a single and multi-argument versions of this function. I wanted to
make it clear what was an argument and what was a return type by providing
different numbers of them in my ealier slide.

Passing null to this function twice is silly...

14

Calling the function

Console.WriteLine(”Hello, World!”);

• Because C-Sharp is Object-Oriented, all functions are tied to a class (this
might be strange if you’re used to Python)

• Perhaps not to the team writing full-on python classes in the robot oympaid
last week

• The class where ‘WriteLine‘ ’lives’ in C-Sharp is called ‘Console‘
• This class also handles input

15

Calling the function

Console.WriteLine(”Hello, World!”);

• Because C-Sharp is Object-Oriented, all functions are tied to a class (this
might be strange if you’re used to Python)

• Perhaps not to the team writing full-on python classes in the robot oympaid
last week

• The class where ‘WriteLine‘ ’lives’ in C-Sharp is called ‘Console‘
• This class also handles input

15

Branching (conditionals)

Branching

Photo by Oliver Roos on Unsplash.

16

https://unsplash.com/@fairfilter?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/PCNdauVPbjA?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Two Paths

• Sometimes we want to do something only if something else is true
• We do this using ‘if‘ and ‘else‘
• You can do this without those constructs, but then you’re in wacky golfing
territory.

• And no one wants to see that...

17

Ok, fine...

18

Also short-circuit operators...

19

If statement

• We have a condition ‘if (a == 42)‘
• We have code that will run only if this is the case
• We (optionally) have code that will run if it is not the case (else)

20

In code

if (condition) {
// Do things if true
} else {
//Do things if false
}

21

Loops

• We’ll talk more about iteration next week
• For the extention task at the end, you might find this bit useful

22

(advanced) Repeating

• Another form of branching is the loop
• Simplest form: while
• When a condition is true execute the code in the body of the statement
• Then jump back to the condition
• Make sure the condition can change in the loop, else it will loop forever!

23

In Code

int myValue = 0;
while (myValue < 4) {
// Do things here
myValue++;
}

24

Guessing Game

25

	Variables
	Functions
	Branching (conditionals)
	Loops (extention)

